skip to main content


Search for: All records

Creators/Authors contains: "Haake, Anne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Deep learning models have achieved state-of-the-art performance in semantic image segmentation, but the results provided by fully automatic algorithms are not always guaranteed satisfactory to users. Interactive segmentation offers a solution by accepting user annotations on selective areas of the images to refine the segmentation results. However, most existing models only focus on correcting the current image’s misclassified pixels, with no knowledge carried over to other images. In this work, we formulate interactive image segmentation as a continual learning problem and propose a framework to effectively learn from user annotations, aiming to improve the segmentation on both the current image and unseen images in future tasks while avoiding deteriorated performance on previously-seen images. It employs a probabilistic mask to control the neural network’s kernel activation and extract the most suitable features for segmenting images in each task. We also design a task-aware architecture to automatically infer the optimal kernel activation for initial segmentation and subsequent refinement. Interactions with users are guided through multi-source uncertainty estimation so that users can focus on the most important areas to minimize the overall manual annotation effort. Extensive experiments are performed on both medical and natural image datasets to illustrate the proposed framework’s effectiveness on basic segmentation performance, forward knowledge transfer, and backward knowledge transfer. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    We propose to jointly analyze experts' eye movements and verbal narrations to discover important and interpretable knowledge patterns to better understand their decision-making processes. The discovered patterns can further enhance data-driven statistical models by fusing experts' domain knowledge to support complex human-machine collaborative decision-making. Our key contribution is a novel dynamic Bayesian nonparametric model that assigns latent knowledge patterns into key phases involved in complex decision-making. Each phase is characterized by a unique distribution of word topics discovered from verbal narrations and their dynamic interactions with eye movement patterns, indicating experts' special perceptual behavior within a given decision-making stage. A new split-merge-switch sampler is developed to efficiently explore the posterior state space with an improved mixing rate. Case studies on diagnostic error prediction and disease morphology categorization help demonstrate the effectiveness of the proposed model and discovered knowledge patterns. 
    more » « less